

Löb's theorem

Rasmus Blanck

March 28, 2019

1 Diagonalisation

- Recall the diagonal lemma: For each formula $\varphi(x)$, there is a sentence δ such that $T \vdash \delta \leftrightarrow \varphi(\delta)$.
- Gödel famously proved the diagonal lemma for the formula $\neg\text{Pr}_T(x)$ to obtain a sentence that is true, but not provable.
- The idea was to formalise the expression “this sentence isn’t provable”.
- What about “this sentence is provable”?
- Let’s assume T to be a consistent, recursively axiomatised extension of PA and fix a Σ_1 provability predicate $\text{Pr}_T(x)$ numerating “ x is provable from the axioms of T ”.

2 Proof of Gödel’s first

- We have $T \vdash \gamma \leftrightarrow \neg\text{Pr}_T(\gamma)$
- Suppose $T \vdash \gamma$.
- Then there is a proof of γ from the axioms of T , so $\mathbb{N} \models \text{Pr}_T(\gamma)$ and (by Σ_1 -completeness of T) $T \vdash \text{Pr}_T(\gamma)$.
- By construction of γ , $T \vdash \neg\gamma$, a contradiction.
- So γ isn’t provable in T : $T \not\vdash \gamma$.
- This means that $\mathbb{N} \models \neg\text{Pr}_T(\gamma)$.
- But we have $\mathbb{N} \models \gamma \leftrightarrow \neg\text{Pr}_T(\gamma)$, so
- $\mathbb{N} \models \gamma$.
- We have ascertained that γ is true but not provable in T .

3 Henkin's question

- Consider an η such that $T \vdash \eta \leftrightarrow \text{Pr}_T(\eta)$. Is such an η true, provable, etc?
- Kreisel had some things to say about this, see below.
- Let's try a proof similar to the one above:
- Suppose $T \vdash \eta$. Then $\text{Pr}_T(\eta)$ is provable, so η is provable, so ...
- Suppose $T \vdash \neg\eta$. Then $\neg\text{Pr}_T(\eta)$ is provable, so η isn't provable, so ...
- Clearly, we must do something else.

4 Löb's answer

- Löb identified certain conditions that “the ordinary” provability predicate satisfies:
 - L1) If $T \vdash \phi$, then $T \vdash \text{Pr}_T(\phi)$.
 - L2) $T \vdash \text{Pr}_T(\phi) \wedge \text{Pr}_T(\phi \rightarrow \psi) \rightarrow \text{Pr}_T(\psi)$
 - L3) $T \vdash \text{Pr}_T(\phi) \rightarrow \text{Pr}_T(\text{Pr}_T(\phi))$.
- For provability predicates satisfying these, the Henkin sentence is provable:

Löb's Theorem. Suppose that $\text{Pr}_T(x)$ satisfies L1-L3. If $T \vdash \text{Pr}_T(\phi) \rightarrow \phi$, then $T \vdash \phi$.

Proof. Let ϕ be any sentence such that $T \vdash \text{Pr}_T(\phi) \rightarrow \phi$. Let λ be such that $T \vdash \lambda \leftrightarrow (\text{Pr}_T(\lambda) \rightarrow \phi)$. By construction of λ and L1 we have that :

$$T \vdash \text{Pr}_T(\lambda \leftrightarrow (\text{Pr}_T(\lambda) \rightarrow \phi)) \quad (1)$$

By L2:

$$T \vdash \text{Pr}_T(\lambda) \wedge \text{Pr}_T(\lambda \rightarrow (\text{Pr}_T(\lambda) \rightarrow \phi)) \rightarrow \text{Pr}_T(\text{Pr}_T(\lambda) \rightarrow \phi) \quad (2)$$

By (1) and (2):

$$T \vdash \text{Pr}_T(\lambda) \rightarrow \text{Pr}_T(\text{Pr}_T(\lambda) \rightarrow \phi) \quad (3)$$

By L2 again:

$$T \vdash \text{Pr}_T(\text{Pr}_T(\lambda)) \wedge \text{Pr}_T(\text{Pr}_T(\lambda) \rightarrow \phi) \rightarrow \text{Pr}_T(\phi) \quad (4)$$

By (3) and (4):

$$T \vdash \text{Pr}_T(\lambda) \wedge \text{Pr}_T(\text{Pr}_T(\lambda)) \rightarrow \text{Pr}_T(\phi) \quad (5)$$

By L3:

$$T \vdash \text{Pr}_T(\lambda) \rightarrow \text{Pr}_T(\phi) \quad (6)$$

By assumption on ϕ

$$T \vdash \text{Pr}_T(\phi) \rightarrow \phi \quad (7)$$

So by (6) and (7):

$$T \vdash \text{Pr}_T(\lambda) \rightarrow \phi \quad (8)$$

Then, by construction of λ :

$$T \vdash \lambda \quad (9)$$

By L1:

$$T \vdash \text{Pr}_T(\lambda) \quad (10)$$

But then, by (8):

$$T \vdash \phi \quad (11)$$

□

5 Gödel's 2nd

If T is consistent, r.e., and sufficiently strong, then $T \not\vdash \text{Con}_T$.

Kripke's proof of Löb's theorem from G2.

- Suppose $T \vdash \text{Pr}_T(\phi) \rightarrow \phi$.
- Then $T + \neg\phi \vdash \neg\text{Pr}_T(\phi)$, by contraposition and the deduction theorem.
- For each ϕ we have $T \vdash \neg\text{Pr}_T(\phi) \leftrightarrow \text{Con}_{T+\neg\phi}$, meaning
- $T + \neg\phi \vdash \text{Con}_{T+\neg\phi}$.
- This contradicts Gödel's 2nd.
- Therefore $T + \neg\phi$ must be inconsistent.
- Hence $T \vdash \phi$.

The other way around:

- Suppose $T \vdash \text{Con}_T$, that is
- $T \vdash \neg\text{Pr}_T(\perp)$.
- By definition, $T \vdash \text{Pr}_T(\perp) \rightarrow \perp$.
- By Löb's theorem, $T \vdash \perp$, so T is inconsistent.

6 Kreisel on Henkin's problem

Theorem 1. *There is a formula $\text{Pr}_1(x)$ and a term t_1 such that*

1. $\text{Pr}_1(x)$ represents provability in T ,
2. $T \vdash t_1 = \ulcorner \text{Pr}_1(t_1) \urcorner$
3. $T \vdash \text{Pr}_1(t_1)$.

Theorem 2. *There is a formula $\text{Pr}_2(x)$ and a term t_2 such that*

1. $\text{Pr}_2(x)$ represents provability in T ,
2. $T \vdash t_2 = \ulcorner \text{Pr}_2(t_2) \urcorner$
3. $T \vdash \neg\text{Pr}_2(t_2)$.

Let $S(x, y)$ be the substitution function: $S(x, y)$ is the Gödel number of the formula that results from replacing the free variable of the formula with Gödel number x by the numeral for y . We use $\ulcorner \phi \urcorner$ to denote the numeral for the Gödel number of the formula ϕ . Example: let $\phi(x) := x < 7$. Then $S(\ulcorner \phi \urcorner, 5) = \ulcorner 5 < 7 \urcorner$.

We're essentially going to have to show that for every formula $\phi(x)$, we can effectively find a term t such that

$$t = \ulcorner \phi(t) \urcorner.$$

This is sometimes called *strong diagonalisation*.

Proof of Theorem 1. Consider the formula $\text{Pr}_T(\ulcorner S(x, x) \urcorner) \vee S(x, x) = S(x, x)$. This formula has a Gödel number, say, k . Let $t_1 = S(k, k)$. What is t_1 ? It is the (Gödel number of the) result of replacing the free variable in the formula with GN k with the numeral for k . That is,

$$t_1 = \ulcorner \text{Pr}_T(S(k, k)) \vee S(k, k) = S(k, k) \urcorner$$

Since $t_1 = S(k, k)$, we can substitute further:

$$t_1 = \ulcorner \text{Pr}_T(t_1) \vee t_1 = t_1 \urcorner$$

We can now define the formula $\text{Pr}_1(x) := \text{Pr}_T(x) \vee x = t_1$.¹

Let's show that $\text{Pr}_1(x)$ satisfies 1)-3) of Theorem 1. Since $\text{Pr}_T(x)$ represents provability in T , $\text{Pr}_1(x)$ also does so, and therefore 1) holds. 2) was just shown above, since $t_1 = \ulcorner \text{Pr}_T(t_1) \vee t_1 = t_1 \urcorner = \ulcorner \text{Pr}_1(t_1) \urcorner$. For 3), it suffices to note that $\text{Pr}_1(t_1) := \text{Pr}_T(t_1) \vee t_1 = t_1$, and since $t_1 = t_1$ is provable in T , so is $\text{Pr}_1(t_1)$. \square

Proof of Theorem 2. Use the same method to obtain a term t_2 such that

$$t_2 = \ulcorner \text{Pr}_T(t_2) \wedge t_2 \neq t_2 \urcorner$$

Let $\text{Pr}_2(x) = \text{Pr}_T(x) \wedge x \neq t_2$. Then $\text{Pr}_2(x)$ satisfies 1)-3) of Theorem 2. \square

Why isn't this accepted as a solution to Henkin's problem? It is thought that neither $\text{Pr}_1(x)$ nor $\text{Pr}_2(x)$ actually expresses the property " x is provable in T ". That is, the formulas are extensionally correct, but intentionally incorrect. It seems that even Kreisel agreed ([2], p. 681).

Bibliography

- [1] Boolos, G. (1993). *The Logic of Provability*, Cambridge University Press.
- [2] Halbach V., and A. Visser (2014). Self-reference in Arithmetic I, *RSL* 7, pp. 671–691.
- [3] Henkin, L. (1952). A problem concerning provability, *JSL* 17, p. 160.
- [4] Kreisel, G. (1953). On a problem of Henkin's, *Indagationes Mathematicae* 15, p. 405–406.
- [5] Löb, M. H. (1955). Solution of a Problem of Leon Henkin, *JSL* 20(4), pp. 115–118.

¹This construction is attributed to Henkin in a footnote to [4]. Kreisel's own construction is slightly more complicated.