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Introduction

▶ What is a Gödel sentence?
▶ Can we talk about the Gödel sentence of a theory?
▶ Intuition: The sentence 𝛿 constructed by the diagonal lemma to

satisfy PA ⊢ 𝛿 ↔ ¬Pr𝑇 (𝛿) is a Gödel sentence for 𝑇 .
▶ Is any sentence satisfying PA ⊢ 𝛿 ↔ ¬Pr𝑇 (𝛿) a Gödel sentence for 𝑇 ?
▶ The sentence 𝛿 constructed by the diagonal lemma to satisfy

𝑇 ⊢ 𝛿 ↔ ¬Pr𝑇 (𝛿)?
▶ Any sentence satisfying 𝑇 ⊢ 𝛿 ↔ ¬Pr𝑇 (𝛿)?
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Preliminaries
▶ 𝑇 , 𝑆, 𝑈 are some r.e., consistent extensions of PA.
▶ Pr𝑇 (𝑥) is a standard Σ1 provability predicate based on some fixed p.r.

binumeration of 𝑇 in PA.
▶ A sentence 𝜙 is true iff ℕ ⊨ 𝜙.
▶ 𝑇 is sound if everything provable in 𝑇 is true.
▶ We use 𝑈 to emphasise that the thory in question may well be

unsound.
▶ 𝑇 is Σ1-complete if every true Σ1 sentence is provable in 𝑇 .
▶ 𝑇 is 𝜔-consistent if, for every formula 𝜙(𝑥), if 𝑇 proves ¬𝜙(0), ¬𝜙(1), …

then 𝑇 ⊬ ∃𝑥𝜙𝑥 .
▶ PA is sound, Σ1-complete, and 𝜔-consistent.
▶ We do not distinguish between formulas and (the numerals for) their

Gödel numbers.
▶ 𝛿 is a fixed point of 𝜙(𝑥) over 𝑇 iff 𝑇 ⊢ 𝛿 ↔ 𝜙(𝛿).

(𝛿 is a 𝑇 -fixed point of 𝜙(𝑥)).
▶ 𝛿 is a Gödelian sentence of 𝑇 iff 𝑇 ⊢ 𝛿 ↔ ¬Pr𝑇 (𝛿). So a Gödelian

sentence of 𝑇 is a 𝑇 -fixed point of ¬Pr𝑇 (𝑥).
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This talk is based on
Bennet & Blanck: Never trust an unsound theory.
Accepted for publication in Theoria. (Henceforth B&B)

which is written in response to
Lajevardi & Salehi: There may be many arithmetical Gödel sentences.
Philosophia Mathematica 29(2):278–287, 2021. (Henceforth L&S)
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Summary of Lajevardi & Salehi

Two pertinent observations:
▶ The first incompleteness theorem applies to unsound theories too.

(Depending on what we mean by “the first incompleteness theorem”.)
▶ There are unsound theories that are 𝜔-consistent.

Two theorems and one corollary:

1. For all sentences 𝜙: 𝑇 ⊬ 𝜙 iff there is an 𝑆 ⊢ 𝑇 s.t. 𝑆 ⊢ 𝜙 ↔ ¬Pr𝑆(𝜙).
2. For all 𝑇 -fixed points 𝜙 of ¬Pr𝑇 (𝑥): 𝜙 is true iff 𝑇 is sound.

3. Unsound theories have both true and false Gödelian sentences.

And one inconclusive argument:
▶ There are Gödelian sentences with different truth values, therefore we

must not talk about the Gödel sentence.
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Four versions of Gödel’s first for unsound theories (1/2)

Theorem
Let 𝑈 be any r.e., consistent extension of PA. If 𝛿 is any sentence satisfying
𝑈 ⊢ 𝛿 ↔ ¬Pr𝑈 (𝛿), then 𝑈 ⊬ 𝛿 .
Proof.
Let 𝛿 be any sentence satisfying the equivalence. Suppose 𝑈 ⊢ 𝛿 . Then
Pr𝑈 (𝛿) is true. By Σ1-completeness of PA we get PA ⊢ Pr𝑈 (𝛿), so
𝑈 ⊢ Pr𝑈 (𝛿), and 𝑈 ⊢ ¬𝛿 . Then 𝑈 is inconsistent, so 𝑈 ⊬ 𝛿 .
Theorem
Let 𝑈 be any r.e., 𝜔-consistent extension of PA. If 𝛿 is any sentence satisfying
𝑈 ⊢ 𝛿 ↔ ¬Pr𝑈 (𝛿), then 𝑈 ⊬ 𝛿, ¬𝛿 .
Proof.
Suppose 𝑈 ⊢ ¬𝛿 . Since 𝑈 is consistent, 𝑈 ⊬ 𝛿 . So ¬Prf𝑈 (𝛿, 𝑘) is true for
each 𝑘 ∈ 𝜔. By Σ1-completeness of PA, 𝑈 ⊢ ¬Prf𝑈 (𝛿, 𝑘) for each 𝑘 ∈ 𝜔.
But since 𝑈 ⊢ ¬𝛿 , 𝑈 ⊢ Pr𝑈 (𝛿), and 𝑈 ⊢ ∃𝑥Prf𝑈 (𝛿, 𝑥). So 𝑈 is
𝜔-inconsistent.
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Four versions of Gödel’s first (2/2)

Theorem
Let 𝑈 be any consistent, r.e. extension of PA. If 𝛾 is any sentence satisfying
PA ⊢ 𝛾 ↔ ¬Pr𝑈 (𝛾 ), then 𝑈 ⊬ 𝛾 and 𝛾 is true.
Proof.
Suppose 𝑈 ⊢ 𝛾 . Then PA ⊢ Pr𝑈 (𝛾 ), so PA ⊢ ¬𝛾 . Then 𝑈 , extending PA is
inconsistent. Hence 𝑈 ⊬ 𝛾 . So ¬Pr𝑈 (𝛾 ) is true. By soundness of PA,
𝛾 ↔ ¬Pr𝑈 (𝛾 ) is true, so 𝛾 is true.

Theorem
Let 𝑈 be any 𝜔-consistent, r.e. extension of PA. If 𝛾 is any sentence satisfying
PA ⊢ 𝛾 ↔ ¬Pr𝑈 (𝛾 ), then 𝑈 ⊬ 𝛾 , ¬𝛾 and 𝛾 is true.
Proof.
By combining the earlier proofs.
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Löb’s theorem and Gödel’s 2nd

Theorem (Löb’s theorem)
If 𝑇 ⊢ Pr𝑇 (𝜙) → 𝜙, then 𝑇 ⊢ 𝜙.
Proved using Löb’s derivability conditions:

L1 If 𝑇 ⊢ 𝜙, then PA ⊢ Pr𝑇 (𝜙)
L2 PA ⊢ Pr𝑇 (𝜙 → 𝜓) → (Pr𝑇 (𝜙) → Pr𝑇 (𝜓 ))
L3 PA ⊢ Pr𝑇 (𝜙) → Pr𝑇 (Pr𝑇 (𝜙))

Theorem (Gödel’s 2nd)
If 𝛿 is any sentence satisfying 𝑈 ⊢ 𝛿 ↔ ¬Pr𝑈 (𝛿), then 𝑈 ⊢ 𝛿 ↔ Con𝑈 .

Proof.
By construction together with Löb’s conditions.
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Theorem 1 (L&S)
For every sentence 𝜙, the following are equivalent:

1. 𝑇 ⊬ 𝜙
2. there is a consistent theory 𝑆 extending 𝑇 such that 𝑆 ⊢ 𝜙 ↔ ¬Pr𝑆(𝜙).

Theorem A (B&B)
For every formula 𝜃(𝑥), and every sentence 𝜙, the following are equivalent:

1. 𝑇 ⊬ ¬(𝜙 ↔ 𝜃(𝜙))
2. there is a consistent theory 𝑆 extending 𝑇 such that 𝑆 ⊢ 𝜙 ↔ 𝜃(𝜙).

Proof.
Trivial: Observe that 𝑇 ⊬ ¬(𝜙 ↔ 𝜃(𝜙)) iff 𝑆 = 𝑇 + 𝜙 ↔ 𝜃(𝜙) is consistent.
It is sometimes useful to choose 𝑆 more carefully:

1. If 𝑇 ⊬ 𝜙 → ¬𝜃(𝜙), take 𝑆 = 𝑇 + 𝜙 + 𝜃(𝜙).
2. If 𝑇 ⊬ ¬𝜃(𝜙) → 𝜙, take 𝑆 = 𝑇 + ¬𝜃(𝜙) + ¬𝜙.
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Proof of Theorem 1 from Theorem A.
▶ 2 ⇒ 1: Let 𝑆 be a consistent extension of 𝑇 and 𝜙 a sentence such that

𝑆 ⊢ 𝜙 ↔ ¬Pr𝑆(𝜙). If 𝑆 ⊢ 𝜙, then PA ⊢ Pr𝑆(𝜙), so 𝑆, extending PA, is
inconsistent. Hence 𝑆 ⊬ 𝜙, and therefore 𝑇 ⊬ 𝜙.

▶ 1 ⇒ 2: Suppose that 𝑇 ⊬ 𝜙. By Löb’s theorem, 𝑇 ⊬ Pr𝑇 (𝜙) → 𝜙. This is
case 2 of the proof of Theorem A (taking 𝜃(𝑥) ≔ ¬Pr𝑇 (𝑥)), so let
𝑆 = 𝑇 + Pr𝑇 (𝜙) + ¬𝜙. Since 𝑆 extends 𝑇 , we have 𝑇 ⊢ Pr𝑇 (𝜙) → Pr𝑆(𝜙).
Then 𝑆 ⊢ Pr𝑆(𝜙) ∧ ¬𝜙, so 𝑆 and 𝜙 are as desired.

Rasmus Blanck Never trust an unsound theory



Theorem 2 (L&S, rephrased)
The following are equivalent:

1. 𝑇 is unsound.

2. ¬Pr𝑇 (𝑥) has a false fixed point over 𝑇 .

Theorem B (B&B)
The following are equivalent:

1. 𝑇 is unsound.

2. Every formula has a false fixed point over 𝑇 .

Proof.
1 ⇒ 2: Suppose that 𝑇 is unsound, and let 𝜓 be a false but 𝑇 -provable
sentence. Let 𝜃(𝑥) be any formula and let 𝜙 be such that
PA ⊢ 𝜙 ↔ 𝜃(𝜙) ∧ 𝜓 . Since 𝑇 ⊢ 𝜓 and 𝑇 ⊢ PA, 𝑇 ⊢ 𝜙 ↔ 𝜃(𝜙). Since
PA ⊢ 𝜙 → 𝜓 and 𝜓 is false, 𝜙 is also false.

2 ⇒ 1: Suppose that every formula has a false fixed point over 𝑇 . The
formula 𝑥 = 𝑥 has a false fixed point 𝜓 over 𝑇 . But 𝑇 ⊢ 𝜓 = 𝜓 , so 𝑇 ⊢ 𝜓
and 𝑇 is unsound.
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True and false Gödelian sentences

Corollary 3 (L&S)
Any unsound theory 𝑈 has both true and false Gödelian sentences:
There are sentences 𝛿 , 𝛾 such that

▶ 𝑈 ⊢ 𝛿 ↔ ¬Pr𝑈 (𝛿),
▶ 𝑈 ⊢ 𝛾 ↔ ¬Pr𝑈 (𝛾 ), and
▶ 𝑈 ⊢ 𝛿 ↔ 𝛾 , but
▶ 𝛿 is false, and 𝛾 is true.

Proof.
▶ We get 𝛾 by constructing a fixed point of ¬Pr𝑈 (𝑥) over PA.
▶ Theorem B guarantees the existence of a false fixed point of ¬Pr𝑈 (𝑥)

over 𝑈 .
▶ The 𝑈 -provable equivalence of 𝛿 and 𝛾 follows from Gödel’s 2nd, since

both sentences are 𝑈 -provably equivalent to Con𝑈 .
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Diagnosis

▶ If 𝛿 is false and 𝛾 is true, of course 𝛿 ↔ 𝛾 is false.
▶ By Gödel’s 1st, 𝑈 ⊬ 𝛿 . So ¬Pr𝑈 (𝛿) is true. It follows that 𝛿 ↔ Pr𝑈 (𝛿) is

true. This means that 𝛿 ↔ ¬Pr𝑈 (𝛿) is false, even though it is provable
in 𝑈 .

▶ Similarly, 𝑈 ⊬ 𝛾 and ¬Pr𝑈 (𝛿) is true, but, by contrast, 𝛾 is true, so
𝛾 ↔ ¬Pr𝑈 (𝛾 ) is true.

▶ Con𝑈 is true, but 𝛿 is false.
▶ So 𝑈 is wrong about many things: it proves 𝛿 ↔ ¬Pr𝑈 (𝛿), 𝛿 ↔ Con𝑈 ,

and 𝛿 ↔ 𝛾 , even though all of these equivalences are false.
▶ PA, on the other hand, is sound. It does not prove any of these

equivalences.
▶ Hence the fixed points of ¬Pr𝑈 (𝑥) over 𝑈 are not the same as the ones

over PA.
▶ This seems to be an instance of a more general phenomenon.

Rasmus Blanck Never trust an unsound theory



The importance of separating the two coordinates
Observation: A formula may have very different collections of fixed points
over different theories.

Theorem (Löb)
The set of 𝑇 -fixed points of Pr𝑇 (𝑥) is equal to Th(𝑇 ).
Theorem C (B&B)
If 𝑆 is a proper sub- or supertheory of 𝑇 , then there is no formula 𝜃(𝑥) such
that the set of 𝑆-fixed points of 𝜃(𝑥) is equal to Th(𝑇 ).
Proof.
Suppose Th(𝑇 ) ⊊ Th(𝑆), and that 𝜃(𝑥) is a formula whose set of 𝑆-fixed
points equals Th(𝑇 ). Let 𝜓 ∈ Th(𝑆) ⧵ Th(𝑇 ), and let 𝜒 be such that
PA ⊢ 𝜒 ↔ 𝜃(𝜓 ∧ 𝜒). Since 𝑆 ⊢ 𝜓 , it follows that 𝜓 ∧ 𝜒 is a fixed point of
𝜃(𝑥) over 𝑆. By the assumption, 𝑇 ⊢ 𝜓 ∧ 𝜒 . Then 𝑇 ⊢ 𝜓 , a contradiction.

The other case is similar: Let 𝜓 ∈ Th(𝑇 ) ⧵ Th(𝑆), and let 𝜒 be such that
PA ⊢ 𝜒 ↔ ¬𝜃(𝜓 ∨ 𝜒).
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Separating the coordinates again

Theorem 2 (L&S)
The following are equivalent:

1. 𝑇 is sound.

2. For all 𝜙: if 𝑇 ⊢ 𝜙 ↔ ¬Pr𝑇 (𝜙), then 𝜙 is true.

Theorem D (Cf. Lajevardi & Salehi, 2019)
A. The following are equivalent:

A1 𝑇 is sound
A2 For all 𝜙: if 𝜙 ↔ ¬Pr𝑇 (𝜙) is true, then 𝜙 is true.

B. The following are equivalent:
B1 𝑆 is sound
B2 For all 𝜙: if 𝑆 ⊢ 𝜙 ↔ ¬Pr𝑇 (𝜙), then 𝜙 is true.
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Proof of Theorem D

Proof.
▶ A1 ⇒ A2: Suppose that 𝑇 is sound, and that 𝜙 ↔ ¬Pr𝑇 (𝜙) is true. If

𝑇 ⊢ 𝜙, then 𝜙 is true, so ¬Pr𝑇 (𝜙) is true. Hence 𝑇 ⊬ 𝜙. Then ¬Pr𝑇 (𝜙) is
true, and so is 𝜙.

▶ A2 ⇒ A1: Argue for the contrapositive. Suppose that 𝑇 is unsound.
Let 𝜙 be any 𝑇 -provable but false sentence. Then Pr𝑇 (𝜙) is true and 𝜙
is false, so 𝜙 ↔ ¬Pr𝑇 (𝜙) is true.

▶ B1 ⇒ B2: Suppose that 𝑆 is sound, and 𝑆 ⊢ 𝜙 ↔ ¬Pr𝑇 (𝜙). If 𝑇 ⊢ 𝜙,
then PA ⊢ Pr𝑇 (𝜙), so 𝑇 ⊢ ¬𝜙. Hence 𝑇 ⊬ 𝜙, so ¬Pr𝑇 (𝜙) is true, and 𝜙
is true by the soundness of 𝑆.

▶ B2 ⇒ B1: Argue for the contrapositive. Suppose that 𝑆 is unsound.
Theorem B guarantees the existence of a false sentence 𝜙 such that
𝑆 ⊢ 𝜙 ↔ ¬Pr𝑇 (𝜙).
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The Gödel sentence
▶ Claim: the sentence constructed using the fixed point lemma to

satisfy PA ⊢ 𝛾 ↔ ¬Pr𝑇 (𝛾 ) is a Gödel sentence for 𝑇 .
▶ The choice of Gödel numbering, axiomatisation of PA, binumeration

of 𝑇 , and the details of the fixed point lemma all affect which
particular syntactic object we end up with.

▶ A particular syntactic object might be a fixed point of ¬Pr𝑇 (𝑥) under
some of these choices but not under others.

▶ So it really only makes sense to speak of a Gödel sentence of 𝑇
relative to these technicalities.

▶ But: Given them, 𝛾 is surely a Gödel sentence.
▶ What warrants the the talk is that any sentence 𝜙 satisfying

PA ⊢ 𝜙 ↔ ¬Pr𝑇 (𝜙) also satisfies PA ⊢ 𝜙 ↔ Con𝑇 , and that both of
these equivalences are true. And so is 𝜙.

▶ So, may we not “divide out” the insignificant properties of 𝜙 by
closing under provable equivalence in PA, and speak of the Gödel
sentence of 𝑇 over PA?

▶ This makes the notion of the Gödel sentence dependent also on the
choice of base theory.
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Conclusion

▶ Separate the two coordinates in expressions like 𝑆 ⊢ 𝛿 ↔ ¬Pr𝑇 (𝛿).
▶ It is sometimes important over which theory something is a fixed

point.
▶ Construct your fixed points over a sound base theory.
▶ The notions of Gödelian sentences and Gödel sentences should not be

equated: not every 𝑈 -fixed point of Pr𝑈 (𝑥) is a Gödel sentence.
▶ …since Gödel sentences are true?
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Thank you!
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