

UNIVERSITY OF
GOTHENBURG

Never trust an unsound theory

Rasmus Blanck

Joint work with Christian Bennet

Department of Philosophy, Linguistics and Theory of Science
University of Gothenburg

Logic Seminar, 6 May 2022

Introduction

- ▶ What is a Gödel sentence?
- ▶ Can we talk about *the* Gödel sentence of a theory?
- ▶ Intuition: The sentence δ constructed by the diagonal lemma to satisfy $\text{PA} \vdash \delta \leftrightarrow \neg\text{Pr}_T(\delta)$ is a Gödel sentence for T .
- ▶ Is any sentence satisfying $\text{PA} \vdash \delta \leftrightarrow \neg\text{Pr}_T(\delta)$ a Gödel sentence for T ?
- ▶ The sentence δ constructed by the diagonal lemma to satisfy $T \vdash \delta \leftrightarrow \neg\text{Pr}_T(\delta)$?
- ▶ Any sentence satisfying $T \vdash \delta \leftrightarrow \neg\text{Pr}_T(\delta)$?

Preliminaries

- ▶ T, S, U are some r.e., consistent extensions of PA.
- ▶ $\text{Pr}_T(x)$ is a standard Σ_1 provability predicate based on some fixed p.r. binumeration of T in PA.
- ▶ A sentence ϕ is true iff $\mathbb{N} \models \phi$.
- ▶ T is sound if everything provable in T is true.
- ▶ We use U to emphasise that the theory in question may well be unsound.
- ▶ T is Σ_1 -complete if every true Σ_1 sentence is provable in T .
- ▶ T is ω -consistent if, for every formula $\phi(x)$, if T proves $\neg\phi(0), \neg\phi(1), \dots$ then $T \not\vdash \exists x\phi x$.
- ▶ PA is sound, Σ_1 -complete, and ω -consistent.
- ▶ We do not distinguish between formulas and (the numerals for) their Gödel numbers.
- ▶ δ is a fixed point of $\phi(x)$ over T iff $T \vdash \delta \leftrightarrow \phi(\delta)$.
(δ is a T -fixed point of $\phi(x)$).
- ▶ δ is a *Gödelian* sentence of T iff $T \vdash \delta \leftrightarrow \neg\text{Pr}_T(\delta)$. So a Gödelian sentence of T is a T -fixed point of $\neg\text{Pr}_T(x)$.

This talk is based on

Bennet & Blanck: Never trust an unsound theory.

Accepted for publication in *Theoria*. (Henceforth B&B)

which is written in response to

Lajevardi & Salehi: There may be many arithmetical Gödel sentences.

Philosophia Mathematica 29(2):278–287, 2021. (Henceforth L&S)

Summary of Lajevardi & Salehi

Two pertinent observations:

- ▶ The first incompleteness theorem applies to unsound theories too.
(Depending on what we mean by “the first incompleteness theorem”.)
- ▶ There are unsound theories that are ω -consistent.

Two theorems and one corollary:

1. For all sentences ϕ : $T \Vdash \phi$ iff there is an $S \vdash T$ s.t. $S \vdash \phi \leftrightarrow \neg \text{Pr}_S(\phi)$.
2. For all T -fixed points ϕ of $\neg \text{Pr}_T(x)$: ϕ is true iff T is sound.
3. Unsound theories have both true and false Gödelian sentences.

And one inconclusive argument:

- ▶ There are *Gödelian* sentences with different truth values, therefore we must not talk about the *Gödel* sentence.

Four versions of Gödel's first for unsound theories (1/2)

Theorem

Let U be any r.e., consistent extension of PA. If δ is any sentence satisfying $U \vdash \delta \leftrightarrow \neg \text{Pr}_U(\delta)$, then $U \not\vdash \delta$.

Proof.

Let δ be any sentence satisfying the equivalence. Suppose $U \vdash \delta$. Then $\text{Pr}_U(\delta)$ is true. By Σ_1 -completeness of PA we get $\text{PA} \vdash \text{Pr}_U(\delta)$, so $U \vdash \text{Pr}_U(\delta)$, and $U \vdash \neg \delta$. Then U is inconsistent, so $U \not\vdash \delta$. □

Theorem

Let U be any r.e., ω -consistent extension of PA. If δ is any sentence satisfying $U \vdash \delta \leftrightarrow \neg \text{Pr}_U(\delta)$, then $U \not\vdash \delta, \neg \delta$.

Proof.

Suppose $U \vdash \neg \delta$. Since U is consistent, $U \not\vdash \delta$. So $\neg \text{Pr}_U(\delta, k)$ is true for each $k \in \omega$. By Σ_1 -completeness of PA, $U \vdash \neg \text{Pr}_U(\delta, k)$ for each $k \in \omega$. But since $U \vdash \neg \delta$, $U \vdash \text{Pr}_U(\delta)$, and $U \vdash \exists x \text{Pr}_U(\delta, x)$. So U is ω -inconsistent. □

Four versions of Gödel's first (2/2)

Theorem

Let U be any consistent, r.e. extension of PA. If γ is any sentence satisfying $\text{PA} \vdash \gamma \leftrightarrow \neg \text{Pr}_U(\gamma)$, then $U \Vdash \gamma$ and γ is true.

Proof.

Suppose $U \vdash \gamma$. Then $\text{PA} \vdash \text{Pr}_U(\gamma)$, so $\text{PA} \vdash \neg \gamma$. Then U , extending PA is inconsistent. Hence $U \not \Vdash \gamma$. So $\neg \text{Pr}_U(\gamma)$ is true. By *soundness* of PA, $\gamma \leftrightarrow \neg \text{Pr}_U(\gamma)$ is true, so γ is true. □

Theorem

Let U be any ω -consistent, r.e. extension of PA. If γ is any sentence satisfying $\text{PA} \vdash \gamma \leftrightarrow \neg \text{Pr}_U(\gamma)$, then $U \Vdash \gamma, \neg \gamma$ and γ is true.

Proof.

By combining the earlier proofs. □

Löb's theorem and Gödel's 2nd

Theorem (Löb's theorem)

If $T \vdash \text{Pr}_T(\phi) \rightarrow \phi$, then $T \vdash \phi$.

Proved using Löb's derivability conditions:

L1 If $T \vdash \phi$, then $\text{PA} \vdash \text{Pr}_T(\phi)$

L2 $\text{PA} \vdash \text{Pr}_T(\phi \rightarrow \psi) \rightarrow (\text{Pr}_T(\phi) \rightarrow \text{Pr}_T(\psi))$

L3 $\text{PA} \vdash \text{Pr}_T(\phi) \rightarrow \text{Pr}_T(\text{Pr}_T(\phi))$

Theorem (Gödel's 2nd)

If δ is any sentence satisfying $U \vdash \delta \leftrightarrow \neg \text{Pr}_U(\delta)$, then $U \vdash \delta \leftrightarrow \text{Con}_U$.

Proof.

By construction together with Löb's conditions. □

Theorem 1 (L&S)

For every sentence ϕ , the following are equivalent:

1. $T \vdash \phi$
2. there is a consistent theory S extending T such that $S \vdash \phi \leftrightarrow \neg \text{Pr}_S(\phi)$.

Theorem A (B&B)

For every formula $\theta(x)$, and every sentence ϕ , the following are equivalent:

1. $T \vdash \neg(\phi \leftrightarrow \theta(\phi))$
2. there is a consistent theory S extending T such that $S \vdash \phi \leftrightarrow \theta(\phi)$.

Proof.

Trivial: Observe that $T \vdash \neg(\phi \leftrightarrow \theta(\phi))$ iff $S = T + \phi \leftrightarrow \theta(\phi)$ is consistent.
It is sometimes useful to choose S more carefully:

1. If $T \vdash \phi \rightarrow \neg \theta(\phi)$, take $S = T + \phi + \theta(\phi)$.
2. If $T \vdash \neg \theta(\phi) \rightarrow \phi$, take $S = T + \neg \theta(\phi) + \neg \phi$.

□

Proof of Theorem 1 from Theorem A.

- ▶ $2 \Rightarrow 1$: Let S be a consistent extension of T and ϕ a sentence such that $S \vdash \phi \leftrightarrow \neg \text{Pr}_S(\phi)$. If $S \vdash \phi$, then $\text{PA} \vdash \text{Pr}_S(\phi)$, so S , extending PA , is inconsistent. Hence $S \not\vdash \phi$, and therefore $T \not\vdash \phi$.
- ▶ $1 \Rightarrow 2$: Suppose that $T \not\vdash \phi$. By Löb's theorem, $T \not\vdash \text{Pr}_T(\phi) \rightarrow \phi$. This is case 2 of the proof of Theorem A (taking $\theta(x) := \neg \text{Pr}_T(x)$), so let $S = T + \text{Pr}_T(\phi) + \neg \phi$. Since S extends T , we have $T \vdash \text{Pr}_T(\phi) \rightarrow \text{Pr}_S(\phi)$. Then $S \vdash \text{Pr}_S(\phi) \wedge \neg \phi$, so S and ϕ are as desired. □

Theorem 2 (L&S, rephrased)

The following are equivalent:

1. *T is unsound.*
2. $\neg \text{Pr}_T(x)$ *has a false fixed point over T.*

Theorem B (B&B)

The following are equivalent:

1. *T is unsound.*
2. *Every formula has a false fixed point over T.*

Proof.

1 \Rightarrow 2: Suppose that T is unsound, and let ψ be a false but T -provable sentence. Let $\theta(x)$ be any formula and let ϕ be such that

$\text{PA} \vdash \phi \leftrightarrow \theta(\phi) \wedge \psi$. Since $T \vdash \psi$ and $T \vdash \text{PA}$, $T \vdash \phi \leftrightarrow \theta(\phi)$. Since $\text{PA} \vdash \phi \rightarrow \psi$ and ψ is false, ϕ is also false.

2 \Rightarrow 1: Suppose that every formula has a false fixed point over T . The formula $x = x$ has a false fixed point ψ over T . But $T \vdash \psi = \psi$, so $T \vdash \psi$ and T is unsound.

True and false Gödelian sentences

Corollary 3 (L&S)

Any unsound theory U has both true and false Gödelian sentences:

There are sentences δ, γ such that

- ▶ $U \vdash \delta \leftrightarrow \neg \text{Pr}_U(\delta)$,
- ▶ $U \vdash \gamma \leftrightarrow \neg \text{Pr}_U(\gamma)$, and
- ▶ $U \vdash \delta \leftrightarrow \gamma$, but
- ▶ δ is false, and γ is true.

Proof.

- ▶ We get γ by constructing a fixed point of $\neg \text{Pr}_U(x)$ over PA.
- ▶ Theorem B guarantees the existence of a false fixed point of $\neg \text{Pr}_U(x)$ over U .
- ▶ The U -provable equivalence of δ and γ follows from Gödel's 2nd, since both sentences are U -provably equivalent to Con_U .

Diagnosis

- ▶ If δ is false and γ is true, of course $\delta \leftrightarrow \gamma$ is false.
- ▶ By Gödel's 1st, $U \Vdash \delta$. So $\neg \text{Pr}_U(\delta)$ is true. It follows that $\delta \leftrightarrow \text{Pr}_U(\delta)$ is true. This means that $\delta \leftrightarrow \neg \text{Pr}_U(\delta)$ is false, even though it is provable in U .
- ▶ Similarly, $U \Vdash \gamma$ and $\neg \text{Pr}_U(\delta)$ is true, but, by contrast, γ is true, so $\gamma \leftrightarrow \neg \text{Pr}_U(\gamma)$ is true.
- ▶ Con_U is true, but δ is false.
- ▶ So U is wrong about many things: it proves $\delta \leftrightarrow \neg \text{Pr}_U(\delta)$, $\delta \leftrightarrow \text{Con}_U$, and $\delta \leftrightarrow \gamma$, even though all of these equivalences are false.
- ▶ PA, on the other hand, is sound. It does not prove any of these equivalences.
- ▶ Hence the fixed points of $\neg \text{Pr}_U(x)$ over U are not the same as the ones over PA.
- ▶ This seems to be an instance of a more general phenomenon.

The importance of separating the two coordinates

Observation: A formula may have very different collections of fixed points over different theories.

Theorem (Löb)

The set of T -fixed points of $\text{Pr}_T(x)$ is equal to $\text{Th}(T)$.

Theorem C (B&B)

If S is a proper sub- or supertheory of T , then there is no formula $\theta(x)$ such that the set of S -fixed points of $\theta(x)$ is equal to $\text{Th}(T)$.

Proof.

Suppose $\text{Th}(T) \subsetneq \text{Th}(S)$, and that $\theta(x)$ is a formula whose set of S -fixed points equals $\text{Th}(T)$. Let $\psi \in \text{Th}(S) \setminus \text{Th}(T)$, and let χ be such that $\text{PA} \vdash \chi \leftrightarrow \theta(\psi \wedge \chi)$. Since $S \vdash \psi$, it follows that $\psi \wedge \chi$ is a fixed point of $\theta(x)$ over S . By the assumption, $T \vdash \psi \wedge \chi$. Then $T \vdash \psi$, a contradiction.

The other case is similar: Let $\psi \in \text{Th}(T) \setminus \text{Th}(S)$, and let χ be such that $\text{PA} \vdash \chi \leftrightarrow \neg\theta(\psi \vee \chi)$. □

Separating the coordinates again

Theorem 2 (L&S)

The following are equivalent:

1. *T is sound.*
2. *For all ϕ : if $T \vdash \phi \leftrightarrow \neg \text{Pr}_T(\phi)$, then ϕ is true.*

Theorem D (Cf. Lajevardi & Salehi, 2019)

A. *The following are equivalent:*

- A1 *T is sound*
- A2 *For all ϕ : if $\phi \leftrightarrow \neg \text{Pr}_T(\phi)$ is true, then ϕ is true.*

B. *The following are equivalent:*

- B1 *S is sound*
- B2 *For all ϕ : if $S \vdash \phi \leftrightarrow \neg \text{Pr}_T(\phi)$, then ϕ is true.*

Proof of Theorem D

Proof.

- ▶ A1 \Rightarrow A2: Suppose that T is sound, and that $\phi \leftrightarrow \neg\text{Pr}_T(\phi)$ is true. If $T \vdash \phi$, then ϕ is true, so $\neg\text{Pr}_T(\phi)$ is true. Hence $T \not\vdash \phi$. Then $\neg\text{Pr}_T(\phi)$ is true, and so is ϕ .
- ▶ A2 \Rightarrow A1: Argue for the contrapositive. Suppose that T is unsound. Let ϕ be any T -provable but false sentence. Then $\text{Pr}_T(\phi)$ is true and ϕ is false, so $\phi \leftrightarrow \neg\text{Pr}_T(\phi)$ is true.
- ▶ B1 \Rightarrow B2: Suppose that S is sound, and $S \vdash \phi \leftrightarrow \neg\text{Pr}_T(\phi)$. If $T \vdash \phi$, then $\text{PA} \vdash \text{Pr}_T(\phi)$, so $T \vdash \neg\phi$. Hence $T \not\vdash \phi$, so $\neg\text{Pr}_T(\phi)$ is true, and ϕ is true by the soundness of S .
- ▶ B2 \Rightarrow B1: Argue for the contrapositive. Suppose that S is unsound. Theorem B guarantees the existence of a false sentence ϕ such that $S \vdash \phi \leftrightarrow \neg\text{Pr}_T(\phi)$. □

The Gödel sentence

- ▶ Claim: *the* sentence constructed using the fixed point lemma to satisfy $\text{PA} \vdash \gamma \leftrightarrow \neg\text{Pr}_T(\gamma)$ is a Gödel sentence for T .
- ▶ The choice of Gödel numbering, axiomatisation of PA, binumeration of T , and the details of the fixed point lemma all affect which particular syntactic object we end up with.
- ▶ A particular syntactic object might be a fixed point of $\neg\text{Pr}_T(x)$ under some of these choices but not under others.
- ▶ So it really only makes sense to speak of a Gödel sentence of T relative to these technicalities.
- ▶ But: Given them, γ is surely a Gödel sentence.
- ▶ What warrants the *the* talk is that any sentence ϕ satisfying $\text{PA} \vdash \phi \leftrightarrow \neg\text{Pr}_T(\phi)$ also satisfies $\text{PA} \vdash \phi \leftrightarrow \text{Con}_T$, and that both of these equivalences are true. And so is ϕ .
- ▶ So, may we not “divide out” the insignificant properties of ϕ by closing under provable equivalence in PA, and speak of *the* Gödel sentence of T over PA?
- ▶ This makes the notion of the Gödel sentence dependent also on the choice of base theory.

Conclusion

- ▶ Separate the two coordinates in expressions like $S \vdash \delta \leftrightarrow \neg \text{Pr}_T(\delta)$.
- ▶ It is sometimes important over which theory something is a fixed point.
- ▶ Construct your fixed points over a sound base theory.
- ▶ The notions of Gödelian sentences and Gödel sentences should not be equated: not every U -fixed point of $\text{Pr}_U(x)$ is a Gödel sentence.
- ▶ ...since Gödel sentences are true?

Thank you!

References

Bennet, C. and Blanck, R. (2022?). Never trust an unsound theory. *Theoria*. Accepted for publication.

Lajevardi, K. and Salehi, S. (2019). On the arithmetical truth of self-referential sentences. *Theoria*, 85(1):8–17.

Lajevardi, K. and Salehi, S. (2021). There May Be Many Arithmetical Gödel Sentences. *Philosophia Mathematica*, 29(2):278–287.